77. Nat. Chem. 2020, 12, 76, Catalytic C(sp3)–H bond activation in tertiary alkylamines
DOI:10.1038/s41557-019-0393-8
76. Angew. Chem. Int. Ed. 2019, Accepted Article, Rapid syntheses of (−)‐FR901483 and (+)‐TAN1251C enabled by complexity‐generating photocatalytic olefin hydroaminoalkylation
DOI:10.1002/anie.201912010
75. J. Am. Chem. Soc. 2019141, 8426, Streamlined synthesis of C(sp3)–H rich N-heterospirocycles enabled by visible-light-mediated photocatalysis
DOI:110.1021/jacs.9b03372
70. Nature2018, 562, 568, A Protein Functionalization Platform Based on Selective Reactions at Methionine Residues
DOI:10.1038/s41586-018-0608-y
69. Chem. Sci.2018, 10, 83, Mechanistic Investigation into the C(sp3)–H Acetoxylation of Morpholinones
DOI:10.1039/C8SC03434F
72. Organometallics201838, 143, A Class of N–O Type Oxidants to Access High-Valent Palladium Species
DOI:10.1021/acs.organomet.8b00712
74. Angew. Chem. Int. Ed.201958, 9054, Carboxylate-Assisted Oxidative Addition to Aminoalkyl-Pd(II) Complexes Enables Catalyzed C(sp3)–H Arylation of Alkylamines via Distinct Pd(II)/Pd(IV) Pathway
DOI:10.1002/anie.201902838
73. Synlett201930, 454, Palladium(II)-Catalyzed C(sp3)–H Activation of N,O-Ketals towards a Method for the β-Functionalization of Ketones
DOI:10.1055/s-0037-1611664
72. Chem20195, 1, Palladium-Catalyzed C(sp3)–H Bond Functionalization of Aliphatic Amines
DOI:10.1016/j.chempr.2018.12.017
71. Organometallics2019, 38, 143, A Class of N–O-Type Oxidants To Access High-Valent Palladium Species
DOI:10.1021/acs.organomet.8b00712
68. Nature2018, 561, 522, Multicomponent synthesis of tertiary alkylamines by photocatalytic olefin-hydroaminoalkylation
DOI:10.1038/s41586-018-0537-9
67. Chem. Sci.2018, 9, 7628, Diastereoselective C−H Carbonylative Annulation of Aliphatic Amines: A Rapid Route to Functionalized γ-Lactams
DOI:10.1039/C8SC02855A
66. Angew. Chem. Int. Ed.2018, 57, 3178, Selective Reductive Elimination at Alkyl Pd(IV) via Dissociative Ligand Ionization Enables Catalytic C(sp3)−H Amination to Azetidines
DOI:10.1002/anie.201800519
65. Chem. Sci.2017, 8, 8198, The α-Tertiary Amine Motif Drives Remarkable Selectivity for Palladium-Catalyzed Carbonylation of Methylene C−H Bonds
DOI:10.1039/C7SC03876C
64. Angew. Chem. Int. Ed.2017, 56, 11958, Selective Palladium(II)-Catalyzed Carbonylation of β Methylene C−H Bonds in Aliphatic Amines
DOI:10.1002/anie.201706303
63. J. Am. Chem. Soc.2017, 139, 9160, Enantioselective Copper-Catalyzed Arylation-Driven Semipinacol  Rearrangement of Tertiary Allylic Alcohols with Diaryliodonium Salts
DOI:10.1021/jacs.7b05340
62. Chem. Sci.2017, 8, 3586, Ligand-Assisted Palladium-Catalyzed C−H Alkenylation of Aliphatic Amines for the Synthesis of Functionalized Pyrrolidines
DOI:10.1039/C7SC00468K
61. Chem. Sci.2017, 8, 2588, Cobalt-Catalyzed C−H Carbonylative Cyclisation of Aliphatic Amides
DOI:10.1039/C6SC05581H
60. J. Am. Chem. Soc., 2017139, 1412, Palladium-Catalyzed Enantioselective C−H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands
DOI:10.1021/jacs.6b12234
59. Science, 2016, 354, 851, A General Catalytic β-C−H Carbonylation of Aliphatic Amines to β-Lactams
DOI:10.1126/science.aaf9621
58. J. Am. Chem. Soc., 2016, 138, 13183, Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts towards the Synthesis of P-Chiral Phosphines
DOI:10.1021/jacs.6b09334
57. Angew. Chem. Int. Ed.2016, 55, 9024, Continuous-Flow Synthesis and Derivitization of Aziridines through Palladium-Catalyzed C(sp3)−H Activation
DOI:10.1002/anie.201602483
56. Chem. Sci.20167, 2706, The Total Synthesis of K-252c (Staurosporinone) via a Sequential C−H Functionalization Strategy
DOI:10.1039/C5SC04399A
55. Synlett2016, 27, 116, Rapid Generation of Complex Molecular Architectures by a Catalytic Enantioselective Dearomatization Strategy
DOI:10.1055/s-0035-1560377
54. Angew. Chem. Int. Ed.2015, 54, 15840, Ligand-Enabled Catalytic C−H Arylation of Aliphatic Amines by a Four-Membered Ring Cyclopalladation Pathway
DOI:10.1002/anie.201508912
53. Nat. Chem.2015, 7, 1009, A Steric-Tethering Approach Enables Palladium-Catalyzed C−H Activation of Primary Amino Alcohols
DOI:10.1038/nchem.2367
52. J. Am. Chem. Soc.2015, 137, 10362, Mechanistic Insights Into the Palladium-Catalyzed Aziridination of Aliphatic Amines by C−H Activation
DOI:10.1021/jacs.5b05529
51. J. Am. Chem. Soc.2015, 137, 7986, Enantioselective and Regiodivergent Copper-Catalyzed Electrophilic Arylation of Allylic Amides with Diaryliodonium Salts
DOI:10.1021/jacs.5b03937
50. Angew. Chem. Int. Ed.2015, 54, 7857, Copper-Catalyzed Oxy-Alkenylation of Homoallylic Alcohols to Generate Functional Syn-1,3-Diol Derivatives
DOI:10.1002/anie.201501995
49. Angew. Chem. Int. Ed.2015, 54, 5451, A Concise and Scalable Strategy for the Total Synthesis of Dictyodendrin B Based on Sequential C−H Functionalization 
DOI:10.1002/anie.201500067
48. Chem. Sci.2015, 6, 1277, A Counterion Triggered Arylation Strategy Using Diaryliodonium Fluorides 
DOI:10.1039/C4SC02856B
47. Angew. Chem. Int. Ed.2014, 53, 13498, Gram-Scale Enantioselective Formal Synthesis of Morphine Through an Ortho-Para Oxidative Phenolic Coupling Strategy
DOI:10.1002/anie.201408435
46. J. Am. Chem. Soc.2014, 136, 8851, Cu-Catalyzed Cascades to Carbocycles: Union of Diaryliodonium Salts with Alkenes or Alkynes Exploiting Remote Carbocations
DOI:10.1021/ja504361y
45. Nature2014, 510, 129, Palladium-Catalyzed C−H Activation of Aliphatic Amines to Give Strained Nitrogen Heterocycles
DOI:10.1038/nature13389
44. J. Am. Chem. Soc.2013, 135, 12532, Copper-Catalyzed Carboarylation of Alkynes via Vinyl Cations
DOI:10.1021/ja405972h
43. Angew. Chem. Int. Ed.2013, 52, 9284, Copper-Catalyzed Intramolecular Electrophilic Carbofunctionalization of Allylic Amides
DOI:10.1002/anie.201303724
42. Angew. Chem. Int. Ed.2013, 52, 5799, Copper-Catalyzed Arylative Meyer-Schuster Rearrangement of Propargylic Alcohols to Complex Enones Using Diaryliodonium Salts
DOI:10.1002/anie.201301529
41. J. Am. Chem. Soc., 2013, 135, 5322, Copper-Catalyzed Electrophilic Carbofunctionalization of Alkynes to Highly Functionalized Tetrasubstituted Alkenes
DOI:10.1021/ja401840j
40. J. Am. Chem. Soc.2013, 135, 3772, Organocatalytic C−H Bond Arylation of Aldehydes to Bis-Heteroaryl Ketones
DOI:10.1021/ja400051d
39. Angew. Chem. Int. Ed.2012, 51, 9288, Chemical Synthesis of Aspidosperma Alkaloids Inspired by the Reverse of the Biosynthesis of the Rhazinilam Family of Natural Products
DOI:10.1002/anie.201204151
38. J. Am. Chem. Soc.2012, 134, 10773, Copper-Catalyzed Alkene Arylation with Diaryliodonium Salts
DOI:10.1021/ja3039807
37. J. Am. Chem. Soc.2011, 133, 13778, Enantioselective α-Arylation of N-Acyloxazolidinones With Copper(II)-Bisoxazoline Catalysts and Diaryliodonium Salts
DOI:10.1021/ja206047h
36. Chem. Sci.2011, 2, 1487, Catalytic Enantioselective Assembly of Complex Molecules Containing Embedded Quaternary Stereogenic Centres from Simple Anisidine Derivatives
DOI:10.1039/C1SC00218J
35. Chem. Soc. Rev.2011, 40, 1885, Recent Development in Natural Product Synthesis Using Metal-Catalyzed C−H Bond Functionalization
DOI:10.1039/C1CS15013H
34. Angew. Chem. Int. Ed.2011, 50, 1076, Palladium(II)-Catalyzed C−H Bond Arylation of Electron-Deficient Arenes at Room Temperature
DOI:10.1002/anie.201005990
33. Angew. Chem. Int. Ed.2011, 50, 463, Copper(II)-Catalyzed Meta-Selective Direct Arylation of α-Aryl Carbonyl Compounds
DOI:10.1002/anie.201004704
32. Angew. Chem. Int. Ed.2011, 50, 458, A Highly Para-Selective Copper(II)-Catalyzed Direct Arylation of Aniline and Phenol Derivatives
DOI:10.1002/anie.201004703
31. Chem. Sci.2011, 2, 312, Amine Directed Pd(II)-Catalyzed C−H Bond Functionalization Under Ambient Conditions
DOI:10.1039/C0SC00367K
30. Tetrahedron2010, 66, 6429, Alkynes to (E)-Enolates Using Tandem Catalysis: Stereoselective Anti-Aldol and Syn-[3,3]-Rearrangement Reactions
DOI:10.1016/j.tet.2010.05.045
29. Science2009, 323, 1593, A Meta-Selective Copper-Catalyzed C−H Bond Arylation
DOI:10.1126/science.1169975
28. J. Am. Chem. Soc.2008, 130, 8172, Cu(II)-Catalyzed Direct and Site-Selective Arylation of Indoles Under Mild Conditions
DOI:10.1021/ja801767s
27. Angew. Chem. Int. Ed.2008, 47, 3004, Synthesis of Rhazinicine by a Metal-Catalyzed C−H Bond Functionalization Strategy
DOI:10.1002/ange.200602129
26. J. Am. Chem. Soc.2008, 130, 404, An Enantioselective Organocatalytic Oxidative Dearomatization Strategy
DOI:10.1021/ja077457u
25. Chem. Rev.2007, 107, 5596, Recent Developments in the Use of Catalytic Asymmetric Ammonium Enolates in Chemical Synthesis 
DOI:10.1021/cr0683764
24. Drug Discov. Today2007, 12, 8, Enantioselective Organocatalysis Review
DOI:10.1016/j.drudis.2006.11.004
23. Angew. Chem. Int. Ed.2006, 45, 6024, Enantioselective Catalytic Intramolecular Cyclopropanation Using Modified Cinchona Alkaloid Organocatalysts
DOI:10.1002/anie.200602129
22. J. Am. Chem. Soc.2006, 128, 2528, Mild Aerobic Oxidative Palladium(II)-Catalyzed C−H Bond Functionalization: Regioselective and Switchable C−H Alkenylation and Annulation of Pyrroles
DOI:10.1021/ja058141u
21. Angew. Chem. Int. Ed.2006, 45, 2116, Organocatalytic Sigmatropic Reactions: Development of a [2,3]-Wittig Rearrangement Through Secondary Amine Catalysis
DOI:10.1002/anie.200504301
20. Angew. Chem. Int. Ed.2005, 44, 3125, Palladium-Catalyzed Intermolecular Alkenylation of Indoles via Solvent-Controlled Regioselective C−H Functionalization
DOI:10.1002/anie.200500468
19. Angew. Chem. Int. Ed.2004, 43, 4641, Enantioselective Organocatalytic Cyclopropanation via Ammonium Ylides
DOI:10.1002/anie.200460234
18. Angew. Chem. Int. Ed.2004, 43, 2681, An Intramolecular Organocatalytic Cyclopropanation Reaction 
DOI:10.1002/anie.200454007
17. Angew. Chem. Int. Ed.2003, 42, 828, Organic-Catalyst-Mediated Cyclopropanation Reaction
DOI:10.1002/anie.200390222
Postdoctoral Studies: Professor Steven Ley
16. J. Org. Chem.2006, 7, 2715, Double Conjugate Addition of Dithiols to Propargylic Carbonyl Systems to Generate Protected 1,3-Dicarbonyl Compounds 
DOI:10.1021/jo052514s
15. Synlett2005, 13, 2031, Synthesis of  the EF Fragment of Spongistatin 1
DOI:10.1055/s-2005-871960
14. Angew. Chem. Int. Ed.2005, 44, 5433, Total Synthesis of Spongistatin 1: Exploiting the Latent Pseudo-Symmetry
DOI:10.1002/anie.200502008
13. Org. Lett.2003, 5, 4819, Synthesis of C-1-C-28 ABCD Unit of Spongistatin 1
DOI:10.1021/ol035849+
12. Org. Lett.2003, 5, 4815, A Practical and Efficient Synthesis of the C-16-C-28 Spiroketal Fragment (CD) of the Spongistatins
DOI:10.1021/ol035848h
11. Org. Lett.2003, 5, 1147, Addition of Dithiols to Bis-Ynones: Development of a Versatile Platform for the Synthesis of Polyketide Natural Products
DOI:10.1021/ol034248f
10. Org. Biomol. Chem.2003, 1, 15, Development of β-Keto 1,3-Dithianes as Versatile Intermediates for Organic Synthesis
DOI:10.1039/B208982C
Postdoctoral Studies (with Professor Amos Smith)
9. Amos B. Smith, Suresh M. Pitram, Armen M. Boldi, Matthew J. Gaunt, Chris Sfouggatakis, William H. Moser
Multicomponent Linchpin Couplings. Reaction of Dithiane Anions with Epoxides, Epichlorohydrin and Vinyl Epoxides: Efficient, Rapid and Stereocontrolled Assembly of Advanced Fragments for Complex Molecule Synthesis
J. Am. Chem. Soc. 2003, 125, 14435 (10.1021/ja0376238)
8. Amos B. Smith, Suresh M. Pitram, Matthew J. Gaunt, Sergey A. Kozmin
Dithiane Additions to Vinyl Epoxides: Steric Control Over SN2 and SN2' Manifolds
J. Am. Chem. Soc. 2002, 124, 14516 (10.1021/ja0283100)
PhD Studies (with Dr Jonathan Spencer)
7. Joseph A. Wright, Matthew J. Gaunt, Jonathan B. Spencer
Novel Anti-Markovnikov Regioselectivity in the Wacker Reaction of Styrenes
Chem. Eur. J. 2006, 12, 949 (10.1002/chem.200400644)
6. Jinquan Yu, Matthew J. Gaunt, Jonathan B. Spencer
Convenient Preparation of Pure Trans-Arylalkenes via Palladium(II)-Catalyzed Isomerization of the Cis-Alkenes
J. Org. Chem. 2002, 67, 4627 (10.1021/jo015880u)
5. Matthew J. Gaunt, Jinquan Yu, Jonathan B. Spencer
Evidence that the Availability of an Allylic Hydrogen Governs the Regioselectivity of the Wacker Oxidation
Chem. Comm. 2001, 1844 (10.1039/B103066N)
4. Matthew J. Gaunt, Jonathan B. Spencer
Derailing the Wacker Oxidation: Development of a Palladium-Catalyzed Amidation Reaction
Org. Lett. 2001, 3, 25 (10.1021/ol0066882)
3. Edward A. Papageorgiou, Matthew J. Gaunt, Jinquan Yu, Jonathan B. Spencer
Selective Hydrogenolysis of Novel Benzyl Carbamate Protecting Groups
Org. Lett. 2000, 2, 1049 (10.1021/ol005589l)
2. Matthew J. Gaunt, Carlos E. Boschetti, Jinquan Yu, Jonathan B. Spencer
Preferential Hydrogenolysis of NAP Esters Provides a New Orthogonal Protecting Group Strategy for Carboxylic Acids 
Tetrahedron Lett. 1999, 40, 1803 (10.1016/S0040-4039(99)00014-3)
1. Matthew J. Gaunt, Jinquan Yu, Jonathan B. Spencer
Rational Design of Benzyl Type Protecting Groups Allows Sequential Deprotection of Hydroxyl Groups by Cata-lytic Hydrogenolysis 
J. Org. Chem. 1998, 63, 4172 (10.1021/jo980823v)

© 2019 The Gaunt Group

  • Black Twitter Icon