PUBLICATIONS
76. Angew. Chem. Int. Ed.2019, Accepted Article, Rapid syntheses of (−)‐FR901483 and (+)‐TAN1251C enabled by complexity‐generating photocatalytic olefin hydroaminoalkylation
DOI:10.1002/anie.201912010
75. J. Am. Chem. Soc.2019141, 8426, Streamlined synthesis of C(sp3)–H rich N-heterospirocycles enabled by visible-light-mediated photocatalysis
DOI:110.1021/jacs.9b03372
70. Nature2018, 562, 568, A Protein Functionalization Platform Based on Selective Reactions at Methionine Residues
DOI:10.1038/s41586-018-0608-y
69. Chem. Sci.2018, 10, 83, Mechanistic Investigation into the C(sp3)–H Acetoxylation of Morpholinones
DOI:10.1039/C8SC03434F
72. Organometallics201838, 143, A Class of N–O Type Oxidants to Access High-Valent Palladium Species
DOI:10.1021/acs.organomet.8b00712
74. Angew. Chem. Int. Ed.201958, 9054, Carboxylate-Assisted Oxidative Addition to Aminoalkyl-Pd(II) Complexes Enables Catalyzed C(sp3)–H Arylation of Alkylamines via Distinct Pd(II)/Pd(IV) Pathway
DOI:10.1002/anie.201902838
73. Synlett201930, 454, Palladium(II)-Catalyzed C(sp3)–H Activation of N,O-Ketals towards a Method for the β-Functionalization of Ketones
DOI:10.1055/s-0037-1611664
72. Chem20195, 1, Palladium-Catalyzed C(sp3)–H Bond Functionalization of Aliphatic Amines
DOI:10.1016/j.chempr.2018.12.017
71. Organometallics2019, 38, 143, A Class of N–O-Type Oxidants To Access High-Valent Palladium Species
DOI:10.1021/acs.organomet.8b00712
68. Nature2018, 561, 522, Multicomponent synthesis of tertiary alkylamines by photocatalytic olefin-hydroaminoalkylation
DOI:10.1038/s41586-018-0537-9
67. Chem. Sci.2018, 9, 7628, Diastereoselective C−H Carbonylative Annulation of Aliphatic Amines: A Rapid Route to Functionalized γ-Lactams
DOI:10.1039/C8SC02855A
66. Angew. Chem. Int. Ed.2018, 57, 3178, Selective Reductive Elimination at Alkyl Pd(IV) via Dissociative Ligand Ionization Enables Catalytic C(sp3)−H Amination to Azetidines
DOI:10.1002/anie.201800519
65. Chem. Sci.2017, 8, 8198, The α-Tertiary Amine Motif Drives Remarkable Selectivity for Palladium-Catalyzed Carbonylation of Methylene C−H Bonds
DOI:10.1039/C7SC03876C
64. Angew. Chem. Int. Ed.2017, 56, 11958, Selective Palladium(II)-Catalyzed Carbonylation of β Methylene C−H Bonds in Aliphatic Amines
DOI:10.1002/anie.201706303
63. J. Am. Chem. Soc.2017, 139, 9160, Enantioselective Copper-Catalyzed Arylation-Driven Semipinacol  Rearrangement of Tertiary Allylic Alcohols with Diaryliodonium Salts
DOI:10.1021/jacs.7b05340
62. Chem. Sci.2017, 8, 3586, Ligand-Assisted Palladium-Catalyzed C−H Alkenylation of Aliphatic Amines for the Synthesis of Functionalized Pyrrolidines
DOI:10.1039/C7SC00468K
61. Chem. Sci.2017, 8, 2588, Cobalt-Catalyzed C−H Carbonylative Cyclisation of Aliphatic Amides
DOI:10.1039/C6SC05581H
60. J. Am. Chem. Soc., 2017139, 1412, Palladium-Catalyzed Enantioselective C−H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands
DOI:10.1021/jacs.6b12234
59. Science, 2016, 354, 851, A General Catalytic β-C−H Carbonylation of Aliphatic Amines to β-Lactams
DOI:10.1126/science.aaf9621
58. J. Am. Chem. Soc., 2016, 138, 13183, Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts towards the Synthesis of P-Chiral Phosphines
DOI:10.1021/jacs.6b09334
57. Angew. Chem. Int. Ed.2016, 55, 9024, Continuous-Flow Synthesis and Derivitization of Aziridines through Palladium-Catalyzed C(sp3)−H Activation
DOI:10.1002/anie.201602483
56. Chem. Sci.20167, 2706, The Total Synthesis of K-252c (Staurosporinone) via a Sequential C−H Functionalization Strategy
DOI:10.1039/C5SC04399A
55. Synlett2016, 27, 116, Rapid Generation of Complex Molecular Architectures by a Catalytic Enantioselective Dearomatization Strategy
DOI:10.1055/s-0035-1560377
54. Angew. Chem. Int. Ed.2015, 54, 15840, Ligand-Enabled Catalytic C−H Arylation of Aliphatic Amines by a Four-Membered Ring Cyclopalladation Pathway
DOI:10.1002/anie.201508912
53. Nat. Chem.2015, 7, 1009, A Steric-Tethering Approach Enables Palladium-Catalyzed C−H Activation of Primary Amino Alcohols
DOI:10.1038/nchem.2367
52. J. Am. Chem. Soc.2015, 137, 10362, Mechanistic Insights Into the Palladium-Catalyzed Aziridination of Aliphatic Amines by C−H Activation
DOI:10.1021/jacs.5b05529
51. J. Am. Chem. Soc.2015, 137, 7986, Enantioselective and Regiodivergent Copper-Catalyzed Electrophilic Arylation of Allylic Amides with Diaryliodonium Salts
DOI:10.1021/jacs.5b03937
50. Angew. Chem. Int. Ed.2015, 54, 7857, Copper-Catalyzed Oxy-Alkenylation of Homoallylic Alcohols to Generate Functional Syn-1,3-Diol Derivatives
DOI:10.1002/anie.201501995
49. Angew. Chem. Int. Ed.2015, 54, 5451, A Concise and Scalable Strategy for the Total Synthesis of Dictyodendrin B Based on Sequential C−H Functionalization 
DOI:10.1002/anie.201500067
48. Chem. Sci.2015, 6, 1277, A Counterion Triggered Arylation Strategy Using Diaryliodonium Fluorides 
DOI:10.1039/C4SC02856B
47. Angew. Chem. Int. Ed.2014, 53, 13498, Gram-Scale Enantioselective Formal Synthesis of Morphine Through an Ortho-Para Oxidative Phenolic Coupling Strategy
DOI:10.1002/anie.201408435
46. J. Am. Chem. Soc.2014, 136, 8851, Cu-Catalyzed Cascades to Carbocycles: Union of Diaryliodonium Salts with Alkenes or Alkynes Exploiting Remote Carbocations
DOI:10.1021/ja504361y
45. Nature2014, 510, 129, Palladium-Catalyzed C−H Activation of Aliphatic Amines to Give Strained Nitrogen Heterocycles
DOI:10.1038/nature13389
44. J. Am. Chem. Soc.2013, 135, 12532, Copper-Catalyzed Carboarylation of Alkynes via Vinyl Cations
DOI:10.1021/ja405972h
43. Angew. Chem. Int. Ed.2013, 52, 9284, Copper-Catalyzed Intramolecular Electrophilic Carbofunctionalization of Allylic Amides
DOI:10.1002/anie.201303724
42. Angew. Chem. Int. Ed.2013, 52, 5799, Copper-Catalyzed Arylative Meyer-Schuster Rearrangement of Propargylic Alcohols to Complex Enones Using Diaryliodonium Salts
DOI:10.1002/anie.201301529
41. J. Am. Chem. Soc., 2013, 135, 5322, Copper-Catalyzed Electrophilic Carbofunctionalization of Alkynes to Highly Functionalized Tetrasubstituted Alkenes
DOI:10.1021/ja401840j
40. J. Am. Chem. Soc.2013, 135, 3772, Organocatalytic C−H Bond Arylation of Aldehydes to Bis-Heteroaryl Ketones
DOI:10.1021/ja400051d
39. Angew. Chem. Int. Ed.2012, 51, 9288, Chemical Synthesis of Aspidosperma Alkaloids Inspired by the Reverse of the Biosynthesis of the Rhazinilam Family of Natural Products
DOI:10.1002/anie.201204151
38. J. Am. Chem. Soc.2012, 134, 10773, Copper-Catalyzed Alkene Arylation with Diaryliodonium Salts
DOI:10.1021/ja3039807
37. J. Am. Chem. Soc.2011, 133, 13778, Enantioselective α-Arylation of N-Acyloxazolidinones With Copper(II)-Bisoxazoline Catalysts and Diaryliodonium Salts
DOI:10.1021/ja206047h
36. Chem. Sci.2011, 2, 1487, Catalytic Enantioselective Assembly of Complex Molecules Containing Embedded Quaternary Stereogenic Centres from Simple Anisidine Derivatives
DOI:10.1039/C1SC00218J
35. Chem. Soc. Rev.2011, 40, 1885, Recent Development in Natural Product Synthesis Using Metal-Catalyzed C−H Bond Functionalization
DOI:10.1039/C1CS15013H
34. Angew. Chem. Int. Ed.2011, 50, 1076, Palladium(II)-Catalyzed C−H Bond Arylation of Electron-Deficient Arenes at Room Temperature
DOI:10.1002/anie.201005990
33. Angew. Chem. Int. Ed.2011, 50, 463, Copper(II)-Catalyzed Meta-Selective Direct Arylation of α-Aryl Carbonyl Compounds
DOI:10.1002/anie.201004704
32. Angew. Chem. Int. Ed.2011, 50, 458, A Highly Para-Selective Copper(II)-Catalyzed Direct Arylation of Aniline and Phenol Derivatives
DOI:10.1002/anie.201004703
31. Chem. Sci.2011, 2, 312, Amine Directed Pd(II)-Catalyzed C−H Bond Functionalization Under Ambient Conditions
DOI:10.1039/C0SC00367K
30. Tetrahedron2010, 66, 6429, Alkynes to (E)-Enolates Using Tandem Catalysis: Stereoselective Anti-Aldol and Syn-[3,3]-Rearrangement Reactions
DOI:10.1016/j.tet.2010.05.045
29. Science2009, 323, 1593, A Meta-Selective Copper-Catalyzed C−H Bond Arylation
DOI:10.1126/science.1169975
28. J. Am. Chem. Soc.2008, 130, 8172, Cu(II)-Catalyzed Direct and Site-Selective Arylation of Indoles Under Mild Conditions
DOI:10.1021/ja801767s
27. Angew. Chem. Int. Ed.2008, 47, 3004, Synthesis of Rhazinicine by a Metal-Catalyzed C−H Bond Functionalization Strategy
DOI:10.1002/ange.200602129
26. J. Am. Chem. Soc.2008, 130, 404, An Enantioselective Organocatalytic Oxidative Dearomatization Strategy
DOI:10.1021/ja077457u
25. Chem. Rev.2007, 107, 5596, Recent Developments in the Use of Catalytic Asymmetric Ammonium Enolates in Chemical Synthesis 
DOI:10.1021/cr0683764
24. Drug Discov. Today2007, 12, 8, Enantioselective Organocatalysis Review
DOI:10.1016/j.drudis.2006.11.004
23. Angew. Chem. Int. Ed.2006, 45, 6024, Enantioselective Catalytic Intramolecular Cyclopropanation Using Modified Cinchona Alkaloid Organocatalysts
DOI:10.1002/anie.200602129
22. J. Am. Chem. Soc.2006, 128, 2528, Mild Aerobic Oxidative Palladium(II)-Catalyzed C−H Bond Functionalization: Regioselective and Switchable C−H Alkenylation and Annulation of Pyrroles
DOI:10.1021/ja058141u
21. Angew. Chem. Int. Ed.2006, 45, 2116, Organocatalytic Sigmatropic Reactions: Development of a [2,3]-Wittig Rearrangement Through Secondary Amine Catalysis
DOI:10.1002/anie.200504301
20. Angew. Chem. Int. Ed.2005, 44, 3125, Palladium-Catalyzed Intermolecular Alkenylation of Indoles via Solvent-Controlled Regioselective C−H Functionalization
DOI:10.1002/anie.200500468
19. Angew. Chem. Int. Ed.2004, 43, 4641, Enantioselective Organocatalytic Cyclopropanation via Ammonium Ylides
DOI:10.1002/anie.200460234
18. Angew. Chem. Int. Ed.2004, 43, 2681, An Intramolecular Organocatalytic Cyclopropanation Reaction 
DOI:10.1002/anie.200454007
17. Angew. Chem. Int. Ed.2003, 42, 828, Organic-Catalyst-Mediated Cyclopropanation Reaction
DOI:10.1002/anie.200390222
Postdoctoral Studies: Professor Steven Ley
16. J. Org. Chem.2006, 7, 2715, Double Conjugate Addition of Dithiols to Propargylic Carbonyl Systems to Generate Protected 1,3-Dicarbonyl Compounds 
DOI:10.1021/jo052514s
15. Synlett2005, 13, 2031, Synthesis of  the EF Fragment of Spongistatin 1
DOI:10.1055/s-2005-871960
14. Angew. Chem. Int. Ed.2005, 44, 5433, Total Synthesis of Spongistatin 1: Exploiting the Latent Pseudo-Symmetry
DOI:10.1002/anie.200502008
13. Org. Lett.2003, 5, 4819, Synthesis of C-1-C-28 ABCD Unit of Spongistatin 1
DOI:10.1021/ol035849+
12. Org. Lett.2003, 5, 4815, A Practical and Efficient Synthesis of the C-16-C-28 Spiroketal Fragment (CD) of the Spongistatins
DOI:10.1021/ol035848h
11. Org. Lett.2003, 5, 1147, Addition of Dithiols to Bis-Ynones: Development of a Versatile Platform for the Synthesis of Polyketide Natural Products
DOI:10.1021/ol034248f
10. Org. Biomol. Chem.2003, 1, 15, Development of β-Keto 1,3-Dithianes as Versatile Intermediates for Organic Synthesis
DOI:10.1039/B208982C
Postdoctoral Studies: Professor Amos Smith
9. J. Am. Chem. Soc.2003, 125, 14435, Multicomponent Linchpin Couplings. Reaction of Dithiane Anions with Epoxides, Epichlorohydrin and Vinyl Epoxides: Efficient, Rapid and Stereocontrolled Assembly of Advanced Fragments for Complex Molecule Synthesis
DOI:10.1021/ja0376238
8. J. Am. Chem. Soc.2002, 124, 14516, Dithiane Additions to Vinyl Epoxides: Steric Control Over SN2 and SN2' Manifolds
DOI:10.1021/ja0283100
PhD Studies: Dr Jonathan Spencer
7. Chem. Eur. J.2006, 12, 949, Novel Anti-Markovnikov Regioselectivity in the Wacker Reaction of Styrenes
DOI:10.1002/chem.200400644
6. J. Org. Chem.2002, 67, 4627, Convenient Preparation of Pure Trans-Arylalkenes via Palladium(II)-Catalyzed Isomerization of the Cis-Alkenes
DOI:10.1021/jo015880u
5. Chem. Comm.2001, 0, 1844, Evidence that the Availability of an Allylic Hydrogen Governs the Regioselectivity of the Wacker Oxidation
DOI:10.1039/B103066N
4. Org. Lett.2001, 3, 25, Derailing the Wacker Oxidation: Development of a Palladium-Catalyzed Amidation Reaction
DOI:10.1021/ol0066882
3. Org. Lett.2000, 2, 1049, Selective Hydrogenolysis of Novel Benzyl Carbamate Protecting Groups
DOI:10.1021/ol005589l
2. Tetrahedron Lett., 1999, 40, 1803, Preferential Hydrogenolysis of NAP Esters Provides a New Orthogonal Protecting Group Strategy for Carboxylic Acids
DOI:10.1016/S0040-4039(99)00014-3
1. J. Org. Chem., 1998, 63, 4172, Rational Design of Benzyl Type Protecting Groups Allows Sequential Deprotection of Hydroxyl Groups by Catalytic Hydrogenolysis
DOI:10.1021/jo980823v

© 2018 by The Gaunt Group, University of Cambridge. 

  • Grey Twitter Icon